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81531 Curitiba, Brazil 

Departamento de Estado Solido, Institute de Fisica, Unicamp, Caixa Postal 6165, 
13081 Campinas, Brazil 

Received 9 June 1992 

Abstract. The semiclassical approximation has been used to evaluate the exact propagators 
far two one-dimensional quantum systems: (a) a free particle interacting with one hard-wall 
potential moving with constant velocity, and (b) a free particle inside a rigid box with one 
wall moving uniformly in time. The results derived from our propagaton are in agreement 
with those of the corresponding Schriidinger equations. 

The propagator can be represented by the sum over paths in the study of quantum 
mechanics thrn-gh the Feynman path integra! [!, 2;. !t is xe!! knawn !ha! the Feyman 
approach to quantum mechanics is easy to formulate but results are difficult to evaluate. 
However, in the semiclassical approximation, only the classical paths contribute to 
the propagator and calculation of the propagator becomes much simpler. It is also 
interesting to note that semiclassical propagators are exact in most quantum dynamical 
systems such as the time-dependent quadratic Lagrangians [3,4], a free particle [5-7] 
or an harmonic oscillator [&IO] interacting with a wedge and a free particle in a rigid 
box with fixed walls [ll]. In this letter we discover two more such quantum systems: 
(a) a free particle interacting with one hard-wall potential moving with constant velocity, 
and (b) a free particle inside a rigid box with one wall moving uniformly in time. 

Hard-wall potential moving wifh constant velocity. We assume that the hard-wall 
potential is located at L( t )  = ut, where U is positive (negative) when it moves to the 
right (!eft) a!cng the x-~xis.  The free pal?ic!e has nn!y twn c!assica! paths, !?ne direct 
and the other indirect, which start from x. > L. = L(f . )  at time t. and arrive at 
xb > Lb = L(tb) at time tb. 

For the direct path, the classical action is given by 

S,, =m(xb-x.)’/2T (T= tb - fo )  (1) 
where m is the mass of the free particle. For convenience we consider that U > 0 and 
the initial velocity U is positive when the particle moves to the right along the x-axis, 
otherwise negative. For the indirect classical path the particle spends the time 

before hitting the wall and the time 
I’ = (x. - L o ) / (  U + U)  

f” = [U ( X b  - x.) + v(x, - L,)]/(v + 2u)(v + U )  

(2) 

(3) 
ai2, 

respectively, the speeds of the particle before and after collision with the wall. With 
the help of equations (2) and (3), we find that the initial speed of the particle must be 

(4) 
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for the indirect classical path. The corresponding classical action can then be shown 
to be 

S. ( j“ u2 dt + jo’” ( u + 2 ~ ) ~  dt) 
0 

m 
2T 

= - [ ( X b  + x. )2 - 4U(X,,tb + Xbt. - Ut.tb)]. ( 5 )  

Using the well known formula of Van Neck [ 121, we obtain the semiclassical propagator 
in the form 

K W ( X b ,  f b ;  x.3 t u )  

= (&)”*[ e x P ( g  (Xb -xA2 

[ ( X ~ + X , , ) ~ - ~ U ( X , ~ ~  +xbt, - utatb)] (6) 

which reduces to the well known result [131 as expected. In (6) a relative phase of 71 

has been included for the reflected classical path. 
The corresponding Schrodinger equation is of the form 

f? J21L(X, 1 )  . JlL(X, 1 )  -- =1fI- 
2m JX’ J f  

with the time-dependent boundary condition 

(7) 

Substituting the wavefunction 

&(x, ij = A sinikjx - i i i j j j  expjipk(x, ijj 

into (7). we obtain 

(9j 

~ ) ~ ( x , t ) = ( : )  112 sin[k(x-L(t))]exp [ i y  ;hJm;y2 -+k’ ) t 3 (10) 

where we have chosen A = ( 2 / ~ r ) ” ~  in order to satisfy the flux condition in quantum 
mechanics [ 141. Using the spectral relation 

Kw(Xb.fb;X.,b)= + i ! (X . , f . )+k (xb .  tt.)dk (11) lom 
and the identity 3.898-1 in [15], we obtain equation (6) after integrating over the 
variable k Furthermore, it vanishes at the moving wall or KW(xb,  tb; ut., to) = 
Kw(utb, t b ;  x., to )  =O. Therefore, we conclude that the semiclassical propagator (6) is 
exact. 
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Rigid box with one wall moving uniformly with time. We assume that the fixed wall is 
located at x = 0 and the moving wall at x = lo+ ut = I( f )  with U > 0 and lo> 0. The free 
particle has an infinite number of classical paths which start from x. at time fa and 
arrive at xb at time fb.  For the case of x. < xb, we can classify the classical paths by 
specifying which walls (the fixed or the moving) the particle collides with on the first 
and last collisions. There are four classes, namely: 

(1) the first collision with the moving wall or  no collisions at all; 
(ij both the iirsi and the iast coiiisions with the fixed waii; 
(3) the first collision with the fixed wall and the last collision with the moving wall; 
(4) both the first and the last collisions with the moving wall. 
Let us first consider the simplest case of x. = xb = 0. In this special case, all the 

(12) 
u(f;+ I;) = (+, - I ,  ( j 2 1 )  (13) 

classical paths belong to class ( 1 )  as defined above. After careful analysis, we have 

(U - 2ju) ti = b,, 

(U -2ju)ty = ( ( j  a 1)  (14) 
with the initial condition 

ut&= I ,  - lo -  ut, = I ,  - lo.  (15) 
Hereafter, 4 ( j a  1 )  is the position of the moving wall when the particle hits it for the 
j th  time and the particie spends t; ( t ; )  traveiiing from x = D (x = 4 j to amve ai x = 4 
(x=O) before (after) the j t h  collision with the moving wall. In deriving the above 
relations, the reduction speed of the particle by Zu after each collision with the moving 
wall has been taken into account. 

. I . . ~  

Solving equations (12)-(15), we obtain 
In = ul.J[u-(2n -1)ul ( n  a 1 )  (16) 

tj = ul , / (u  -2ju)[u -(2j+ l )u l  (17) 
t; = ula/(u -Zju)[u-(2j-l)u] (18) 

(19) $ = t;+ t~=2ul./[u-(2j- I)u][u-(Zj+ l)u]. 
With the help of equations (16)-(19), we find 

Therefore the initial speed of the particle must be 
U =2nu+Znl./ T = 2nlbjT 

(20) 

for a classical path which hits the moving wall n times. Now the corresponding classical 
action is given by 

Sn(0, 0; 0, f a )  

(22) 
) =E (I:" u 2 d f + " i 1  j'' ( ~ - 2 j u ) ~  df+ ( ~ - 2 n u ) ~  df  

2 j = ,  0 ld" 
(1.  = f !  + t!') = 2mn21.,lb/T 1 1 1  

after straightforward evaluations. 
F=r the genere! C B S ~  of xa < xb, eq~zdan ( ! 2 )  shou!d be modified as follows; 

uf;= I ,  + x (23) 

(U -2ju)fj = I,+, (24) 
and 
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and equation (14) with j = n should be changed to 

( U  -2nu)r; = 1. + y.  (25) 

In equations (23)-(25), x and y respresent different quantities in the different classes 
of classical paths, ie. 

(1) x=-x.,y=x,; 
(2) x=x., y = x b ;  
(3) x=x.,y=-xb; 
(4) x = -xm, y = -xb. 
Now we can repeat all the calculations and obtain 

T=(~+y+2n / , , ) / (~ -2nu)  (26) 

so the initial speed of the particle must be 

U = 2nu +(2nla + x + y ) /  T =  (2db + x + y ) / T  (27) 

for the classical path to have n collisions with the moving wall. The corresponding 
classical action is given by 

s!?(xb, l b ;  x m ,  f a )  

) = ( (2n/ ,+ x + y ) 2 +  4nu[(xrb + yr.) + n/,( r. + ib )I+ 4n2u2rOt,, 
2 T  

( j= 1,2,3,4). (28) 

Using the well known formula of Van Vleck, we finally write the semiclassical 
propagator in the form 

Kw(Xbr t b ;  x.7 t o )  

Here a relative phase of ?I for the classical paths of classes (2) and (4) has been 
included since they have an odd number of collisions with the moving wall. Substituting 
(28) with different values of j into (29), we obtain the semiclassical propagator as 

K W ( x b ,  l b ;  xa, 1.1 

(30) 

where &(z, T )  is the Jacobi theta function [U]. Applying the following identity: 

e&, T )  = (-iT)-’/2 exp( -iz2/ m)e,( z /  T, -I/  T )  (31) 
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to (30), we get the propagator in the form 

KWW(xb, 1,; x.3 1.) 

L1047 

x sin(nmb/lb) sin(nma/lO). (32) 
In deriving the above equation we also used the definition of the theta function &(I, I). 

We derive the time-dependent wavefunctions from the propagator (32) by spectral 
resolution 

@"(x, I)= ( - l;I))"2 exp (imux') - sin[n?rx/l(r)] exp 2*1(1) 

These are in agreement with those of the corresponding Schrodinger equation [16-181. 
We should remark that the authors of [la] inserted a n  extra factor, 
exp(-in2?r2h/2mulo), in the wavefunctions in order to include the fixed-wall case. 
However, it is apparent that this factor does not appear in the propagator, hence we 
conclude that the semiclassical propagator (30) is exact [19]. 

!E EIS !e::ei, we have d i ~ c r ~ i ~ d  i w ~  iiiOiS qiiaiiiuiii jj;jieiiij iii -iv.:lich ihe entire 
contribution to the propagator comes from the classical paths alone and the relative 
phase of each classical path depends on the total number of collisions between the 
particle and the walls (fixed or moving). With the help of Van Vleck, we evaluated 
these semiclassical propagators which happen to be exact. A study of the case in which 
the hard-wall potential moves periodically in time [17, 181 is in progress and will be 
reported in due course. 

This work was partially supported by the CNPq (Brazilian Govemment Agency), 
Roc. no 30.1515-81/FA and no 800609/89-1. 
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